东西问丨旅比科学家宋志伟:为何越是在当下,越要加强国际科技交流合作?******
中新社布鲁塞尔1月31日电 题:旅比科学家宋志伟:为何越是在当下,越要加强国际科技交流合作?
中新社记者 德永健

以国际科技交流合作“推手”形容宋志伟并不为过。作为计算机专家,宋志伟旅居比利时已有37载,现任IBM(美国国际商用机器公司)合伙人,统领IBM在荷兰、比利时、卢森堡三国的软件测试业务,是这家跨国巨头在欧洲地区为数不多的华人总监。
繁忙工作之余,宋志伟致力于推动国际科技交流合作。2022年11月,在宋志伟的组织下,2022世界青年科学家峰会在比利时首都布鲁塞尔举办欧洲专场活动,来自17个国家的150余名专家学者、青年科学家代表等齐聚一堂,分享在生命健康、数字经济、新能源等领域的前沿进展,激励青年科学家创新创业。
自2019年由中国科学技术协会和浙江省人民政府发起,这是世界青年科学家峰会首度“登陆”欧洲。宋志伟坦言,此次欧洲专场活动无论是会议规模还是嘉宾规格都超出预期,活动发出的《联合行动倡议》亦得到积极响应,会场涌动的“热情”让他感到“越是在当下,越要加强国际科技交流合作”。
近日,中新社“东西问”专访宋志伟,探讨相关话题。
现将访谈实录摘要如下:
中新社记者:世界青年科学家峰会欧洲专场活动不仅成功举办,而且超出预期,背后的原因是什么?
宋志伟:这说明人们都关心国际科技交流合作,认为这是好事。比如这次活动共得到22家欧洲本地科研院所的支持,包括欧洲研究和创新中心、欧盟科研人员服务中心等顶尖院所,参与院所的数量比预想多。
在专题报告环节,包括3名院士在内的15位专家学者担任演讲嘉宾。这3名院士都是各自领域的“学术带头人”,会后的反馈非常好。
为了鼓励对话、行动和改革,活动发出《联合行动倡议》并得到积极响应,一些代表提议来年可以把会场放到他们的国家,还有代表希望加大参与力度,这表明大家对活动是认可的。

中新社记者:您多年致力于推动国际科技交流合作,为什么这次把目光转向青年科学家?
宋志伟:从科学的角度来说,青年科学家可能更着眼于基础科学,着眼于青年之间的合作,表面上看不太会涉及类似5G、量子计算这些具有战略意义的课题,但他们更开放,更有活力,代表着“科学的未来”。
另一方面,科学界发生了很大变化。在我们那个年代,科学技术不像现在这么发达,科学家的成长大多“按部就班”,如今世界上任何一个角落,任何一位年轻人都有可能做出大事,只要有好的想法,能把自己的东西付诸实践,就可以走进市场。
所以,这次欧洲专场活动希望搭建一个平台,帮助青年科学家获得更多人力、财力等资源创新创业;这些创新不一定局限于基础科学领域,如果在应用科学领域实现创新,不仅可以造福于现实生活,也会推动现代科学发展。

中新社记者:为什么越是在当下,越要加强国际科技交流合作?
宋志伟:我想援引人类命运共同体理念,不论有什么分歧,谁也不能把谁“逐出地球”。对青年科学家而言,这些年轻人在会场上相识,总有一天这些国际交流的经历会融入成长历程,让他们看待世界的胸怀变得更加宽广,从而把人类命运共同体理念向前推进。
反之,如果想“画地为牢”,人为割裂,当今世界的科技革命和产业变革也不允许。以我供职的IBM为例,过去是按市场需求划分组织架构,比如分成金融、通信、政府采购、工业制造等部门,但现在无论是金融还是通信,都要用到“云技术”,互相关联,由统一的“云平台”主导。
从这个意义上说,必须促进国际科技交流合作。现在科技创新可能来自世界各个角落,如果交流渠道多,覆盖范围广,竞争力会变得更强;只想把自己限定在某一领域或特定地理空间,已经不可能了。

中新社记者:如何克服国际科技交流合作中的困难和阻力?
宋志伟:国际环境带来的阻力一直都有,只不过当下显得比较突出。我曾告诉团队,重要的是“找准定位”,如果出发点是想让“地球村”变得更好,为人类命运共同体的福祉服务,就会很有底气,这样的国际交流合作永远都不会错。
与海外人才交往,需要以诚相待。在征集海外人才创新创业项目时,作为专业人士,我会跟踪项目在中国落地情况,不会中途撒手不管,也不会刻意隐藏什么东西,只有遵照专业、透明原则,才能彼此建立互信。
另外,要有开放心态。在国际科技交流合作中,很多时候即使不是学术交流,哪怕是朋友间的交流,对科研创新都有帮助,所以一定要“往外走”,跳出“舒适区”,不同观点和不同文化背景互相接触可能发生碰撞,但也会让科学家受益匪浅。(完)
受访者简介:

宋志伟,旅比计算机专家;1986年赴比利时留学,1997年加盟IBM(美国国际商用机器公司),现任IBM合伙人;2016年出任中国科学技术协会欧洲海智创新创业基地主任;去年11月,组织举办2022世界青年科学家峰会欧洲专场活动。
诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?****** 相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。 你或身边人正在用的某些药物,很有可能就来自他们的贡献。 2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。 一、夏普莱斯:两次获得诺贝尔化学奖 2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。 今年,他第二次获奖的「点击化学」,同样与药物合成有关。 1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。 过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。 虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。 虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。 有机催化是一个复杂的过程,涉及到诸多的步骤。 任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。 不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。 为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。 点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。 点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。 夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。 大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。 大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。 大自然的一些催化过程,人类几乎是不可能完成的。 一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。 夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢? 大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。 在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。 其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。 诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]: 夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。 他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。 「点击化学」的工作,建立在严格的实验标准上: 反应必须是模块化,应用范围广泛 具有非常高的产量 仅生成无害的副产品 反应有很强的立体选择性 反应条件简单(理想情况下,应该对氧气和水不敏感) 原料和试剂易于获得 不使用溶剂或在良性溶剂中进行(最好是水),且容易移除 可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定 反应需高热力学驱动力(>84kJ/mol) 符合原子经济 夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。 他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。 二、梅尔达尔:筛选可用药物 夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。 他就是莫滕·梅尔达尔。 梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。 为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。 他日积月累地不断筛选,意图筛选出可用的药物。 在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。 三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。 2002年,梅尔达尔发表了相关论文。 夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。 三、贝尔托齐西:把点击化学运用在人体内 不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。 虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。 诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。 她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。 这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。 卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。 20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。 然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。 当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。 后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。 由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。 经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。 巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。 虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。 就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。 她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。 大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。 2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。 贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。 在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。 目前该药物正在晚期癌症病人身上进行临床试验。 不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。 「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江) 参考 https://www.nobelprize.org/prizes/chemistry/2001/press-release/ Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116. Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387. Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021. https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613. 吉利彩票地图 |